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A compressively strained film on a substrate can wrinkle into intricate patterns. This Rapid Communication
studies the evolution of the wrinkle patterns. The film is modeled as an elastic nonlinear plate and the substrate
a viscoelastic foundation. A spectral method is developed to evolve the nonlinear system. When the initial film
strains are isotropic, the wrinkles evolve into a pattern with a motif of zigzag segments, in random orientations.
When the initial film strains are anisotropic, the wrinkles evolve to an array of herringbones or stripes. The
zigzag segments select a width, a length, and an elbow angle that minimize the total elastic energy.
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Soft materials are integrated into thin film devices to en-
hance performance, add functions, or reduce costs. Examples
include organic and porous dielectrics in interconnect struc-
tures[1,2], elastomers in deformable electronics[3], and vis-
cous glass in strained semiconductor devices[4,5]. When a
hard film is deposited on such a soft material, often the film
is compressively strained and forms wrinkles. The wrinkles
are a nuisance in some applications, but may be used as
stretchable interconnects[6,7], device templates[8–10], or
biological assays[11].

The practical considerations aside, the wrinkles fascinate
us just as patterns in other systems do, such as a breaking
liquid film or a self-assembling block copolymer. The broad
interest has motivated recent theoretical studies of the
wrinkles [11–20]. A film may wrinkle into different patterns.
For an elastic film island on a viscous substrate[4], for ex-
ample, no wrinkles form at the island corners. Near each
island edge, straight wrinkles(stripes) form. At the island
center, wrinkles of random directions(labyrinths) form (Fig.
1). At some distance away from an island edge, nearly peri-
odic zigzag wrinkles form, reminiscent of the herringbone
structures found on the Au(111) surface[21], and in a com-
puter simulation of an adsorbate submonolayer[22], al-
though the detailed mechanics are different.

A recent energy calculation by Chen and Hutchinson[16]
has shown that, for a film under an equal biaxial compres-
sion, the herringbones have lower elastic energy than the
stripes. The stripes relieve film compression in one direction,
but the herringbones relieve film compression in both direc-
tions. The energy calculation by itself, however, does not
give the means by which the wrinkles evolve. Why are the
ordered herringbones rarely observed in films under biaxial
compression? What sets the length and the elbow angle of
the zigzag segments?

To go beyond the limitation of the energy calculation, we
develop a method toevolvethe nonlinear system, allowing
wrinkles of all configurations to compete. We show that,
when the film strains are isotropic, the ordered herringbones
have essentially the same energy as the labyrinths; because
there are far more disordered configurations than ordered

ones, the labyrinths form. When the film strains are moder-
ately anisotropic, the ordered herringbones form. In both
cases, the zigzag segments select the width, length, and el-
bow angle that minimize the total elastic energy.

We consider an infinite film with no free edges. Initially,
the film is flat, in a state of uniform strains, whose principal
directions coincide with the coordinatesx1 andx2. The initial
in-plane strain components satisfy that«12

0 =0,«11
0 ,0 and,

without losing generality,«11
0 ø«22

0 . Upon wrinkling, the film
remains bonded to the substrate. Let the deflection bew, and
the two in-plane displacements beua in the film. The Greek
subscript takes values 1 and 2. Letq be the normal traction,
andTa be the two shear tractions on the film/substrate inter-
face.

To relax the system in time, we introduce a viscosity to
the substrate. We are mainly interested in the stable states;
the detailed viscoelastic behavior is unimportant for this pur-
pose, as long as the substrate is elastic after relaxation. We
adopt the simplest representation of this behavior, i.e., the
Kelvin model that relates the deflectionw and the normal
tractionq as
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The substrate is rigid during a time much shorter thant, and
has the tensile stiffnessK for a time much longer thant. The
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FIG. 1. A schematic of wrinkles in a hard film on a soft

substrate.
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shear behavior of the substrate is taken to be linearly elastic

Ta = Sua, s2d

whereS is the shear stiffness. Shear viscosity is neglected
because it serves no purpose in this model. Shear elasticity,
however, plays a crucial role in setting the two-dimensional
wrinkle patterns, as will be discussed later.

Because the wrinkle amplitude is small compared to the
wavelength, the elastic film is accurately modeled by the von
Karman nonlinear plate theory[23]. The membrane strains
«ab have three contributions: the initial strains, the gradients
of the in-plane displacements, and the rotation caused by the
deflection, namely,

«ab = «ab
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Hooke’s law relates the membrane forcesNab to the mem-
brane strains

Nab =
Eh

1 − n2fs1 − nd«ab + n«ggdabg, s4d

whereh is the thickness,E Young’s modulus, andn Pois-
son’s ratio of the film. A repeated Greek subscript implies
summation over 1 and 2. The in-plane force balance of a
plate element requires that

] Nab/] xb = Ta. s5d

The out-of-plane force balance and the moment balance of a
plate element requires that

q = −
Eh3
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Equations(1)–(6) evolve the deflection,wsx1,x2,td, along
with all the other fields.

Two types of analytical results are obtained readily. First,
a linear perturbation analysis shows that an initial imperfec-
tion can amplify if the magnitude of«11

0 exceeds that of a
critical strain,«c=−fÎ3Bs1+ndg−1. The dimensionless num-
ber B=fE/ s1−n2dg /Kh measures the relative stiffness of the
film to the substrate. As expected, the critical strain has a
small magnitude for a stiff film on a compliant substrate.
Second, the wrinkles, if constrained to be an array of stripes
along thex2 axis, will equilibrate to a sinusoidal deflection
field, with wavelengthle=2phsB/12d1/4 and amplitudeAe

=hÎs2/3ds«11
0 /«c−1d. This equilibrium state is readily un-

derstood. The stripe wrinkles relieve the membrane compres-
sion, but bend the film and distort the substrate. A family of
self-similar wrinkles, with a fixed ratio of amplitude and
wavelength, all relieve the same amount of the membrane
compression. Large wrinkles have low bending energy, but
small wrinkles have low substrate energy. Consequently, the
wrinkles select an intermediate wrinkle size to minimize the
total elastic energy. The substrate tensile stiffnessK is sig-
nificant. Were the substrate purely viscous, the substrate
would store no elastic energy, and the film bending energy
would drive the wrinkles to coarsen indefinitely.

We evolve wrinkle patterns in a square cell in the plane
sx1,x2d. Periodic boundary conditions replicate the cell to the
entire plane. The cell is subdivided into grids. Values of the
functions at the grid points are evolved in time. The cell must
be large enough to accommodate many zigzag segments, and
the grid spacing must be small enough to resolve the indi-
vidual elbows. An inspection of Eqs.(1)–(6) indicates two
difficulties: the nonlinear terms and the spatial differentia-
tions. A spectral method[24] deals with the two difficulties
in separate planes. It calculates the nonlinear terms in the
sx1,x2d plane, and the spatial differentiations in the Fourier
plane, where the spatial differentiations become multiplica-
tions with the wave vector. At each time step, the two planes
communicate via the fast Fourier transform and its inverse.
All calculations are carried out withB=1000,n=0.3, and
S/K=1/6. Thecritical strain is«c<−0.014, and the equilib-
rium wavelength for stripe wrinkles isle<19h.

Figure 2 displays the deflectionw in the planesx1,x2d at
several times. A gray scale is used: a bright spot represents a
crest and a dark spot a trough. The initial film strains are
«11

0 =«22
0 =−0.02. For this example, each side of the cell is

32le long, and contains 256 grid points. The initial deflection
is random, with the magnitude less than 0.025h. The time
increment is 0.2t. (Cell and grid sizes, as well as the time
increment, have been varied to ascertain numerical conver-
gence.) The wrinkles evolve into a pattern with a motif of
zigzag segments. When the deflection is small, a crest bends
equally in all directions, like a spherical cap. A large deflec-
tion breaks this symmetry: the crest bends only in one direc-
tion, like a cylindrical surface. This symmetry breaking has a
geometric origin: a flat sheet can bend to a cylindrical sur-
face with no membrane strain, but can only bend to a spheri-
cal surface with severe membrane strains. The segments rap-
idly attain the equilibrium width, which is close to the

FIG. 2. Time sequence of wrinkle patterns, starting from a ran-
dom initial deflection imperfection. The initial strain field is equal
biaxial, «11

0 =«22
0 =−0.02.
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wavelengthle of the equilibrium stripes. The segments attain
a length several timesle, forming labyrinths with no long
range order.

Figure 3 shows four stable patterns for films with different
initial strains. In each case,«11

0 =−0.035, but«22
0 takes a dif-

ferent value. When«22
0 =−0.035 (not shown in Fig. 3), the

system is isotropic, and the labyrinths form. When«22
0

=−0.027, the symmetry is broken, and nearly aligned her-
ringbones form, with nearly 90° elbow angles. Note the dis-
locationlike imperfection, where one herringbone is wedged
between two other herringbones. When«22

0 =−0.02 and«22
0

=−0.018, the herringbones still form, but with obtuse elbow
angles. When«22

0 =−0.015, stripes form.
Figure 4 plots the elastic energy stored in the system as a

function of time. Initially, the film is under equal biaxial

strains«11
0 =«22

0 =−0.02; all the elastic energy is stored by the
film compression, with the energy per unit areaU0

=Ehs«11
0 d2/ s1−nd. The total energy per unit area,Utotal, re-

duces over time. The three curves correspond to time se-
quences started from different initial conditions. When the
initial condition is a random deflection field, wrinkles evolve
into labyrinths. When the initial condition is a sinusoidal
deflection field with wavelength 13.6h and a small ampli-
tude, the wrinkles evolve into the equilibrium stripes with
the wavelengthle<19h. When the initial deflection is an
array of nascent herringbones, of periodlH=5.6h, wrinkles
evolve into equilibrated herringbones. The herringbones and
the labyrinths approach essentially the same energy, which is
lower than that of the stripes. The labyrinths are merely dis-
ordered herringbones; they relieve the film compression in
all directions, but have no energy to order.

Figure 5 plots the total energy as a function of the her-
ringbone periodlH. Again, the initial film strains are«11

0

=«22
0 =−0.02. Divide the computational cell into horizontal

segments, each with heightlH in the x2 direction. In the
alternate segments prescribe the initial deflection fieldw
=A cosfÎ2psx1±x2d /leg, with a small amplitudeA. WhenlH

is small, the density of the elbows is high. WhenlH is large,
the film compression along the arms is unrelaxed. Conse-
quently, herringbones of an intermediate period minimize the
total energy.

The substrate shear stiffnessS plays an essential role in
equilibrating the two-dimensional wrinkle patterns. Were the
substrate shear stiffness absent, the compression along the
length of a set of segments would be relaxed by the bending
of a set of neighboring segments oriented in a different di-
rection. Consequently, the segment length would coarsen in-
definitely.

In summary, under biaxial compression, a hard film on a
soft substrate wrinkles with the motif of zigzag segments.
Two kinds of symmetry are broken. First, a crest bends into

FIG. 3. Patterns at timet=20000t, started from a random initial
deflection imperfection, under different biaxial strains. In all cases,
«11

0 =−0.035.

FIG. 4. The total energies for three patterns as functions of
time.

FIG. 5. Total elastic energy as a function of the herringbone
period.
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a spherical surface for a small deflection, and bends into a
cylindrical surface for a large deflection, resulting in the seg-
ments. Second, the segments form labyrinths when the initial
membrane strains are isotropic, and form aligned herring-
bones or stripes when the initial membrane strains are aniso-
tropic. Two lengths emerge. The segments reach an equilib-
rium width to compromise the film bending and the substrate
deflection, and an equilibrium length to compromise the

elbow density and the substrate shear. The elbow angle de-
pends on the degree of anisotropy of the membrane strains.
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